Protection of ischemic myocardium in diabetics by inhibition of electroneutral Na+-K+-2Cl- cotransporter.
نویسندگان
چکیده
Diabetes increases both the incidence of cardiovascular disease and complications of myocardial infarction and heart failure. Studies using diabetic animals have shown that changes in myocardial sodium transporters result in alterations in intracellular sodium (Na(i)) homeostasis. Because the changes in sodium homeostasis can be due to increased entry of Na+ via the electroneutral Na+-K+-2Cl- cotransporter (NKCC), we conducted experiments in acute diabetic hearts to determine if 1) net inward cation flux via NKCC is increased, 2) this cotransporter contributes to a greater increase in Na(i) during ischemia, and 3) inhibition of NKCC limits injury and improves function after ischemia-reperfusion. These issues were investigated in perfused type I diabetic and nondiabetic rat hearts subjected to ischemia and 60 min of reperfusion. A group of diabetic and nondiabetic hearts was perfused with 5 microM of bumetanide, an inhibitor of NKCC. Flux via NKCC, Na(i), and ATP was measured in each group with the use of radiotracer 86Rb, 23Na, and 31P nuclear magnetic resonance spectroscopy, respectively, whereas ischemic injury was assessed by measuring creatine kinase release on reperfusion. Cation flux via NKCC, as measured by 86Rb uptake, was significantly increased in diabetic hearts. Inhibition of NKCC significantly reduced ischemic injury in diabetic hearts, improved functional recovery on reperfusion, attenuated the ischemic rise in Na(i), and conserved ATP during ischemia-reperfusion. Parallel studies in nondiabetic hearts showed that NKCC inhibition was not cardioprotective. These findings demonstrate that flux via NKCC is increased in type I diabetic hearts and that inhibition with bumetanide attenuates changes in Na(i) and ATP during ischemia and protects against ischemic injury. The data suggest a therapeutic role for pharmacological agents that inhibit flux via NKCC in diabetic patients with myocardial ischemia.
منابع مشابه
Electroneutral Na-coupled cotransporter expression in the kidney during variations of NaCl and water metabolism.
The purpose of the present study was to analyze the long-term regulation of renal bumetanide-sensitive Na+-K+-2Cl- cotransporter and thiazide-sensitive Na+-Cl- cotransporter gene expression during changes in NaCl and water metabolism. Male Wistar rats exposed to high or low NaCl intake, saline loading, dehydration, water loading, and furosemide administration during 7 days were studied. Control...
متن کاملMolecular cloning and chromosome localization of a putative basolateral Na(+)-K(+)-2Cl- cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells.
Electroneutral Na(+)-K(+)-2Cl- cotransporters represent one of the major routes for Cl- movement in epithelia. A secretory form of the cotransporter has been described in the basolateral membrane of a variety of epithelia from fish to mammals. We isolated a putative bumetanide-sensitive Na(+)-K(+)-2Cl- cotransporter cDNA, BSC2, from mIMCD-3 cells. Northern analysis indicates that in contrast to...
متن کاملGill Na(+)-K(+)-2Cl(-) cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting.
Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 par...
متن کاملThe electroneutral cation-chloride cotransporters.
Electroneutral cation-chloride cotransporters are widely expressed and perform a variety of physiological roles. A novel gene family of five members, encompassing a Na+-Cl- transporter, two Na+-K+-2Cl- transporters and two K+-Cl- cotransporters, encodes these membrane proteins; homologous genes have also been identified in a prokaryote and a number of lower eukaryotes. The cotransporter protein...
متن کاملEffects of growth hormone and cortisol on Na(+)-K(+)-2Cl(-) cotransporter localization and abundance in the gills of Atlantic salmon.
The hormones responsible for the regulation of the teleostean gill Na(+)-K(+)-2Cl(-) cotransporter have not been elucidated. With Western blotting and immunocytochemistry, Na(+)-K(+)-2Cl(-) cotransporter abundance and localization were examined in the gills of Atlantic salmon (Salmo salar) following 2-week treatment with growth hormone (GH; 5.0 microg x g(-1)), cortisol (50 microg x g(-1)), and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2001